A Group Additivity Approach to Solvent Effects and Reaction Mechanisms for Aquation of an Iron(ii) Complex in Aqueous Solutions

Michael J. Blandamer,^{a+} John Burgess,^{a+} Heather J. Cowles,^a Andrew J. De Young,^a Jan B. F. N. Engberts,^b **Saskia A. Galema,b Susan J. Hill,a and Ian M. Horna**

^a*Department of Chemistry, University of Leicester, Leicester LEI 7RH, U.K.*

Department of Organic Chemistry, University of Groningen, Nijenborgh 16, AG 9747 Groningen, The Netherlands

Kinetic solvent effects for aquation of iron(ii) complex ions, $[Fe(5\text{-}NO_2\text{-}phen)]^{2+}$ (phen = 1,10-phenanthroline), in binary aqueous mixtures are accounted for in terms of a **Group** Additivity Scheme, highlighting a novel method for probing reaction mechanisms.

In aqueous solutions at 298.2 K, first-order rate constants k_1 for the aquation of $[Fe(5-NO₂-phen)₃]$ ²⁺ increase¹ when MeOH, EtOH, PriOH, and ButOH are added; Figure 1. The data refer to aquation reactions carried out in 0.1 mol dm-3 solutions. In all solvent mixtures studied here, aquation proceeded to completion and obeyed first-order kinetics for well over 2.5 half-lives. The ratio $ln(k_1/k_1^{\text{o}})$ is a linear function of the molality of added alcohol, m_2 ; k_1 ⁰ is the first-order rate constant at $m₂ = 0$. The linear dependences can be understood in terms of the Savage-Wood Additivity Scheme² (or, 3) SWAG). In the present context^{4,5} the effects of alkyl (R) and hydroxyl(0H) groups produced by added ROH on initial (IS) and transition(TS) states are described in terms of painvise interaction parameters, $G(R < ->1S)$, $G(OH < ->1S)$, $G(R < - > TS)$, and $G(OH < - > TS)$; equation 1.

$$
\ln(k_1/k_1^0) = [2/R.T.(m^0)^2].[G(R < ->1S) +G(OH < ->1S) - G(R < ->TS) -G(OH < ->STS)].m_2
$$
 (1)

The pattern in Figure 1 is consistent with TS being more hydrophobic than **IS,** the Fe-N bonds stretching on going from IS to TS. The slopes, $[d\{ln(k_1/k_1^0)\}/dm_2]$ calculated using a linear least-squares procedure show constant increments with increase in the number of CH₂ groups in ROH as required if equation 1 **is** written in the form which re-expresses group R in terms of equivalent methylene groups; $e.g., \, \text{CH}_3 = 1.5 \times$ CH_2 , $C_2H_5 = 2.5 \times CH_2$ and $C_3H_7 = 3.5 \times CH_2$. More significantly, perhaps, the increment is 21 J kg $^{-1}$, being close in magnitude to the pairwise methylene-methylene interaction parameter $G(CH_2<->CH_2)$, -34 J kg-1. This observation points to an increase in hydrophobic character of the

Figure 1. Dependence on molality of organic solute m_2 for $ln(k_1/k_1^0)$ describing rate of aquation of iron (I) complex $[Fe(5-NO₂-phen)₃]$ ²⁺ in aqueous acidic solutions at 298.2 K. Solutes are MeOH (\bigcirc) , EtOH (\triangle) , PrⁱOH (\square) , Bu^tOH (\bigcirc) , ethanoic acid (\triangle) , and methanoic acid $(\blacksquare).$

iron(r1) complex on going from **IS** to **TS** equivalent to approximately one methylene group. In other words, the comparison drawn in Figure 1 offers a basis for probing solvent effects and subtle details of reaction mechanisms.

Addition of the hydrophilic solute $HCO₂H$ produces a decrease in rate constant. When $MeCO₂H$ is added the same pattern emerges in that with increase in the number of $CH₂$ groups, the slope of the plot increases. Moreover the increment in slope is the same as that observed for monohydric alcohols although possible dimer formation between carboxylic acid molecules introduces a new complexity.

We thank S.E.R.C. for a maintenance grant (H. J. C) and the Royal Dutch Shell Company, H. J. Bader fund and the Groningen University fund for their support **(S. A.** G.). We also thank the Research Board at the University of Leicester for a travel grant (M. J. B.).

Received, 3rd May 1988; Corn. 8/01 7340

References

- **1 M. J. Blandamer and J. Burgess,** *Pure Appl. Chem.,* **1983,55,55.**
- *2 J.* **J. Savage and R. H. Wood, J.** *Solution Chem.,* **1976,5,733.**
- **3** *H.* **E. Kent, T. H. Lilley, P. J. Milburn, M. Bloemendal, and G. Somsen, J.** *Solution Chem.,* **1985, 14, 101.**
- **4 W. Blokzyl, J. Jager, J. B. F. N. Engberts, and M. J. Blandamer, J.** *Am. Chem.* **SOC., 1986, 108,6411.**
- **5 W. Blokzyl, J. B. F. N. Engberts, J. Jager, and M. J. Blandamer,** *J. Phys. Chem.,* **1987, 91,** *6022.*